Sains Malaysiana 53(6)(2024): 1243-1253
http://doi.org/10.17576/jsm-2024-5306-02
Matrix Metallopeptidase 3 Coding SNPs
Suppress Cell Invasion in MCF7 Breast Cancer Cells
(Pengekodan Matriks Metallopeptidase 3 SNPs Menekan Pencerobohan Sel dalam Sel Kanser Payudara MCF7)
SHAFINAH AHMAD SUHAIMI1,4,
SOON CHOY CHAN2, PEI PEI CHONG3,
NORAZALINA SAAD4*, DE MING CHAU5 & ROZITA ROSLI4,
1Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200, Kepala Batas, Pulau Pinang, Malaysia
2School of Liberal Arts, Science and Technology, Perdana University, 50490 Kuala Lumpur, Malaysia
3School of Biosciences,
Faculty of Health and Medical Sciences, Taylor’s University, 47500 Subang Jaya, Selangor, Malaysia
4UPM-MAKNA Cancer Research
Laboratory, Institute of Bioscience, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
5Department of Biomedical Sciences, Faculty of Medicine and Health
Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Received: 17 April 2023/Accepted: 1 February 2024
Abstract
Matrix metallopeptidase 3
(MMP3) is among the key players in breast cancer metastasis that contributes to
the highest cancer-related deaths in females globally. Previously, in silico analyses had shown that several coding single nucleotide polymorphisms
(SNPs) of MMP3 were predicted to alter the secondary structures of MMP3 and subsequently reduce its mRNA stability. To validate the mentioned
hypotheses, this study aimed to determine the effects of six coding SNPs of MMP3 on its mRNA stability, protein expression level as well as cell invasiveness in
vitro. In this study, breast adenocarcinoma MCF7 cells were
transfected with MMP3 wild type (MMP3-WT) and a variant containing SNPs
(MMP3-Var). Following transfection, protein expression level, mRNA stability
and enzyme activity of MMP3-WT and MMP3-Var were evaluated. Finally, the effect
of MMP3 coding SNPs on cell invasiveness in breast cancer was
determined. In this study, the mRNA stability, protein expression level and
enzymatic activity of MMP3-Var were significantly reduced. Moreover, the
presence of MMP3 coding SNPs led to attenuated invasiveness of
transfected MCF7 cells. In conclusion, these findings may contribute to the
current understanding of these coding SNPs with metastasis in breast cancer.
Keywords: Carcinoma; in vitro; MMP3; mammary; metastasis; stromelysin-1
Abstrak
Matriks metallopeptidase 3 (MMP3) adalah salah satu daripada pemain utama bagi metastasis kanser payudara yang menyumbang kepada kematian berkaitan kanser yang tertinggi dalam kalangan wanita di seluruh dunia. Sebelum ini, analisis in silico menunjukkan bahawa beberapapolymorfisme nukleotida tunggal (SNPs) pengekodan MMP3 diramalkan untuk mengubah struktur sekunder MMP3 dan seterusnya mengurangkan kestabilan mRNA. Bagi mengesahkan hipotesis tersebut, kajian ini bertujuan untuk mengenal pasti kesan in vitro enam SNPs pengekodan MMP3 ke atas kestabilan mRNA, tahap pengekspresan protein dan kemansangan sel. Dalam kajian ini, sel karsinoma payudara MCF7 telah ditransfeksi dengan MMP3 jenis liar (MMP3-WT) dan varian mengandungi SNPs
(MMP3-Var). Selepas transfeksi, tahap pengekspresan protein, kestabilan mRNA serta aktiviti enzim bagi MMP3-WT dan MMP3-Var telah dinilai. Akhirnya, kesan SNPs pengekodan MMP3 terhadap kemansangan sel kanser payudara telah ditentukan. Kestabilan mRNA, tahap pengekspresan protein dan aktiviti enzim MMP3-Var menurun dengan signifikan. Tambahan pula, SNPs pengekodan MMP3 merencat kemansangan sel-sel MCF7 yang telah ditransfeksi. Kesimpulannya, hasil kajian ini boleh menyumbang kepada pemahaman semasa mengenai SNP pengekodan ini dengan metastasis dalam kanser payudara.
Kata kunci: Karsinoma; in vitro; mamari; MMP3; metastasis; stromelysin-1
REFERENCES
Almutairi, S., Kalloush, H.M.d., Manoon, N.A. & Bardaweel,
S.K. 2023. Matrix metalloproteinases inhibitors in
cancer treatment: An updated review. Molecules 28: 5567.
Ayupe, A.C. & Reis, E.M. 2017.
Evaluating the stability of mRNAs and noncoding RNAs. In Enhancer RNAs.
Methods in Molecular Biology, edited by Ørom, U.
New York: Humana Press. pp. 139-153.
Banik, P., Majumder, R., Mandal, A., Dey, S. & Mandal, M. 2022. A computational
study to assess the polymorphic landscape of matrix metalloproteinase 3
promoter and its effects on transcriptional activity. Computers in Biology and Medicine 145: 105404.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. & Jemal, A. 2018. Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68: 394-424.
Chan, S.C. 2013. Identification and
analysis of single nucleotide polymorphisms in matrix metallopeptidase 2 and 3
genes in Malaysian breast cancer patients. PhD Thesis, Universiti Putra Malaysia (Unpublished).
Chin,
L.T., Liu, K.W., Chen, Y.H., Hsu, S.C. & Huang, L. 2021. Cell-based assays
and molecular simulation reveal that the anti-cancer harmine is a specific matrix metalloproteinase-3 (MMP-3) inhibitor. Computational
Biology & Chemistry 94: 107556.
Feoktistova, M., Geserick,
P. & Leverkus, M. 2016. Crystal violet assay for
determining viability of cultured cells. Cold Spring Harbor Protocols 2016:pdb.prot087379.
Figueira, R.C., Gomes, L.R., Neto, J.S., Silva, F.C., Silva, I.D.C.G. & Sogayar, M.C. 2009. Correlation between MMPs and their
inhibitors in breast cancer tumor tissue specimens and in cell lines with
different metastatic potential. BMC Cancer 9: 20.
Gebert, M., Jaskiewicz,
M., Moszynska, A., Collawn,
J.F. & Bartoszewski, R. 2020. The effects of
single nucleotide polymorphisms in cancer RNAi therapies. Cancers 12:
3119.
Kotnis, A., Sarin, R. & Mulherkar, R. 2005. Genotype, phenotype and cancer: Role of
low penetrance genes and environment in tumour susceptibility. Journal of Biosciences 30: 93-102.
Kousidou, O.C., Roussidis,
A.E., Theocharis, A.D. & Karamanos,
N.K. 2004. Expression of MMPs and TIMPs genes in human breast cancer epithelial
cells depends on cell culture conditions and is associated with their invasive
potential. Anticancer Research 24: 4025-4030.
Li, X., Xue,
Y., Liu, X., Zheng, J., Shen, S., Yang, C., Chen, J., Li, Z., Liu, L., Ma, J.,
Ma, T. & Liu Y. 2019. ZRANB2/SNHG20/FOXK1 axis regulates vasculogenic mimicry formation in glioma. Journal of
Experimental & Clinical Cancer Research 38: 68.
Li,
S., Pritchard, D.M. & Yu, L.G. 2022. Regulation and function of matrix
metalloproteinase-13 in cancer progression and metastasis. Cancers 14:
3263.
Li,
Z. & Chen, L. 2023. Predicting functional consequences of SNPs on mRNA
translation via machine learning. Nucleic Acids Research 51: 7868-7881.
Liang,
M., Wang, J., Wu, C., Wu, M., Hu, J., Dai, J., Ruan,
H., Xiong, S. & Dong, C. 2021. Targeting matrix
metalloproteinase MMP3 greatly enhances oncolytic virus mediated tumor therapy. Translational Oncology 14: 101221.
Maiti, A., Okano, I., Oshi,
M., Okano, M., Tian, W., Kawaguchi, T., Katsuta, E., Takabe,
K., Yan, L., Patnaik, S. & Hait, N.C. 2021.
Altered expression of secreted mediator genes that mediate aggressive breast
cancer metastasis to distant organs. Cancers (Basel) 13: 2641.
Nagase, H., Visse, R. & Murphy, G. 2006. Structure and function of
matrix metalloproteinases and TIMPs. Cardiovascular
Research 69: 562-573.
Pijuan, J., Barceló, C., Moreno, D.F., Maiques, O., Sisó, P., Marti,
R.M., Macia, A. & Panosa,
A. 2019. In vitro cell migration, invasion, and adhesion
assays: From cell imaging to data analysis. Frontiers in Cell and
Developmental Biology 7: 107.
Raeeszadeh-Sarmazdeh, M., Do,
L.D. & Hritz, B.G. 2020. Metalloproteinases and their inhibitors: Potential for the development of new therapeutics. Cells 9: 1313.
Sampieri, C.L., León-Córdoba,
K. & Remes-Troche, J.M. 2013. Matrix metalloproteinases and their tissue inhibitors in gastric
cancer as molecular markers. Journal of Cancer Research and Therapeutics 9: 356-363.
Schneider, C.A., Rasband,
W.S. & Eliceiri, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:
671-675.
Si-Tayeb,
K., Monvoisin, A., Mazzocco,
C., Lepreux, S., Decossas,
M., Cubel, G., Taras, D.,
Blanc, J.F., Robinson, D.R. & Rosenbaum, J. 2006. Matrix metalloproteinase
3 is present in the cell nucleus and is involved in apoptosis. American
Journal of Pathology 169: 1390-1401.
Suhaimi, S.A., Chan, S.C. & Rosli, R. 2020. Matrix
metallopeptidase 3 polymorphisms: Emerging genetic markers in human breast
cancer metastasis. Journal of Breast Cancer 23: 1-9.
Welch,
D.R. & Hurst, D.R. 2019. Defining the hallmarks of metastasis. Cancer
Research 79: 3011-3027.
Wu, J.S., Jiang, J., Chen, B.J.,
Wang, K., Tang, Y.L. & Liang, X.H. 2021. Plasticity of cancer cell
invasion: Patterns and mechanisms. Translational Oncology 14:
100899.
Yamaguchi,
K., Yoshihiro, T., Ariyama, H., Ito, M., Nakano, M., Semba, Y., Nogami, J., Tsuchihashi, K., Yamauchi, T., Ueno, S., Isobe, T., Shindo, K., Moriyama,
T., Ohuchida, K., Nakamura, M., Nagao, Y., Ikeda, T., Hashizume, M., Konomi, H., Torisu,
T., Kitazono, T., Kanayama,
T., Tomita, H., Oda, Y., Kusaba,
H., Maeda, T., Akashi, K. & Baba, E. 2022. Potential therapeutic targets
discovery by transcriptome analysis of an in vitro human gastric signet
ring carcinoma model. Gastric Cancer 25: 862-878.
*Corresponding author; email: norazalina@upm.edu.my
|